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Abstract. Improved knowledge of the real part of the neutron scattering length of 3He is important for fur-
ther development of nuclear few-body theory, as well as for a thorough understanding of neutron scattering
off quantum liquids. The real part of the bound incoherent neutron scattering length b′i has recently been
measured directly with an experimental uncertainty of better than 1% by means of spin echo spectrometry.
The uncertainty of the more fundamental bound multiplet scattering lengths b′± is thus limited by today’s
1.2% uncertainty of the spin-independent coherent part b′c. Employing the skew-symmetric perfect crystal
Si-interferometer at the S18 experimental site at ILL, Grenoble, we have re-measured the real part of the
bound coherent neutron scattering length b′c of 3He. Our result b′c = 6.010(21) fm exhibits a significant
deviation compared to the latest accepted value b′c = 5.74(7) fm (H. Kaiser, H. Rauch, G. Badurek, W.
Bauspiess, U. Bonse, Z. Phys. A 291, 231 (1979)). Including the known value of the incoherent neutron
scattering length, we obtain new values for the real parts of the free singlet and triplet scattering lengths,
a′− = 7.573(30) fm and a′+ = 3.480(18) fm. Our result contravenes by more than 7 standard deviations the
measurement of the same physical quantity that has recently been performed by a group at NIST in a
very similar experiment (P.R. Huffman, D.L. Jacobson, K. Schoen, M. Arif, T.C. Black, W.M. Snow, S.A.
Werner, Phys. Rev. C 70, 014004 (2004)) which yielded b′c = 5.853(7) fm.

PACS. 21.45.+v Few-body systems – 27.10.+h A ≤ 5 – 28.20.Cz Neutron scattering – 25.40.Dn Elastic
neutron scattering

1 Introduction

Within the last decades, the conformity of theoretical pre-
dictions and experimental results for the observables of
certain nuclear few-body systems have achieved a remark-
able level of accuracy. For example, the s-wave neutron
scattering lengths of the systems (n,D) [1,2] and (n,T) [3–
7] are believed to be understood at the 10−3 level. On the
other hand, since 3He is a strong absorber for neutrons
up to energies 1 eV [8], the (n, 3He) system is more diffi-
cult to treat both theoretically as well as experimentally.
For systems involving nuclei of spin I, thermal neutron
scattering will in general be described by spin-dependent
scattering lengths a± which are assigned to the multiplet
states of total spin J = I ± 1/2. By scattering neutrons
off a macroscopic and monatomic sample, the expectation
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is subject to observation, where by σ we denote the Pauli
spin operator of the neutron. Herein, the spin-independent
coherent (ac) and spin-dependent incoherent (ai) part of
the scattering length are linear combinations of the more
fundamental multiplet scattering lengths: defining statis-
tical weight factors describing the degeneracy of the total
spin states J ,

g+ =
I + 1

2I + 1
, g− =

I

2I + 1
, (1)

the singlet (a−) and triplet (a+) scattering lengths are
given by

a− = ac −
√

g+
g−
ai, a+ = ac +

√

g−
g+
ai. (2)

In scattering theory it is convenient to consider the
problem in the centre-of-mass system, where one defines
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the scattering length a, referred to as the free scatter-
ing length. In the laboratory system, as the result of the
reference frame transformation, it is common practice to
use the so-called bound scattering length b given by mn

µ a,

where mn is the neutron mass and µ is the reduced mass
of the neutron-target system.

Precise measurements of the spin-dependent neutron
absorption in 3He nuclei have already been performed in
the 1960s [8]. These measurements pinpoint the imagi-
nary part of the scattering length until the present day.
In contrast, the real part of the coherent scattering length
is only known at the percent level from unpolarized in-
terferometry experiments [9]. Using experimental data of
the free-scattering cross-section [10,11]1, the real parts of
the multiplet scattering lengths could be derived on the
10% level. In a recent precision experiment, the incoherent
part of the scattering length of the light isotope was deter-
mined to a relative uncertainty of 8× 10−3 [13]. Although
the result of this latter experiment has already attracted
considerable interest [14], the situation is still unsatisfac-
tory because the precision of the more fundamental mul-
tiplet scattering lengths is now strongly dominated by the
uncertainty of the coherent part: in order to obtain bal-
anced relative errors of the multiplet scattering lengths,
δb′
−

b′
−

=
δb′+
b′
+

, the relative uncertainty of b′c must be a factor

of 4.3 below the corresponding incoherent quantity as a
consequence of the linear combinations (2). Therefore, a

relative uncertainty
δb′c
b′c
= 3× 10−3 is required.

Moreover, other measurements of the scattering
lengths of several isotopes (1H: [15], 2H: [16], Ar: [17],
Kr and Xe: [18]) show considerable deviations compared
to the values reported in [9]. Thus, there is reason to be-
lieve that in the case of 3He, too, systematic errors have
been underestimated in this latter work. We report here
on a precise interferometric re-measurement of the bound
coherent scattering length of 3He that was undertaken to
supply few-body theory with reliable and error-balanced
values of the multiplet scattering lengths of 3He.

2 Neutron refractive index

During the last decade, there seemed to be some con-
fusion concerning the exact expression for the complex
neutron refractive index in the low-energy limit. Several
attempts [19,20] to express n as a function of the co-
herent scattering length in a way formally similar to the
Goldberger-Seitz-formula [21] were either prone to violate
the optical theorem or took into account only the leading
contribution to the exact scattering cross-section, thereby
neglecting terms of order O(k) and higher. On the other
hand, apparative advances of the last years nowadays per-
mit neutron optical precision experiments that demand at
least the consideration of correction terms linear in k. We

1 Alfimenkov’s experiment measured the scattering cross-
section of 3He relative to 4He and was re-analyzed by Guckels-
berger taking into account improved values for the 4He scat-
tering [12].

therefore begin with a discussion of the exact expression
of the refractive index as a function of the coherent scat-
tering length.

2.1 Sears’ expression

According to [22], the neutron refractive index n = n′+in′′

for neutrons having wave number k scattering off a sample
of scattering center number density % can be expressed in
terms of the scattering amplitude f = f ′ + if ′′ as

n2 = 1 +
4π%f

k2
1

1− J . (3)

The local field correction J accounts for multiple scatter-
ing and vanishes for scattering off a dilute ideal gas. Since
we have %λ3 ¿ 1, |kf | ∼ 10−4 for thermal neutrons it
follows that %

k2
f ¿ 1.

Thus, the square root of (3) can be expanded to give

n = 1 +
2π%

k2
f +O

(

%2|f |2
k4

)

. (4)

As is well known [23], the low-energy expansion of the
(bound) scattering amplitude can be written in terms of
the (bound) scattering length b = b′ − ib′′,

f = −b+ ikb2 +O(k2)
= [−b′ + 2kb′b′′] + i

[

b′′ + k(b′2 − b′′2)
]

+O(k2). (5)

Inserting this expression into (4), the neutron refractive
index can be expressed as a function of the scattering
length. Taking into account terms up to the order of k
and splitting into the real and imaginary parts, we obtain

n = 1− 2π%
k2

b′(1− 2kb′′ +O(k2))

+i
2π%

k2
(b′′ + k(b′2 − b′′2) +O(k2)). (6)

2.2 Beam losses due to n′′

An exact expression for the neutron refractive index
should contain both beam loss mechanisms, i.e. scattering
losses as well as absorption losses, inherent in the optical
theorem. In order to test this requirement, we now exam-
ine the imaginary part of expression (6), which is given
by

n′′ =
%

2k

[

4π

k
b′′ + 4π(b′2 − b′′2) +O(k)

]

. (7)

As is shown in elementary scattering theory, e.g. [24], the
differential scattering cross-section is given by the squared
modulus of the scattering amplitude,

dσs
dΩ

= |f(θ)|2. (8)
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Furthermore, Feenberg’s optical theorem [25] connects the
total cross-section σt = σa + σs (σa: absorption cross-
section) to the imaginary part of the scattering amplitude
in the forward direction,

σt =
4π

k
Imf(θ = 0). (9)

Inserting the scattering amplitude expansion (5) into (8)
and (9), one readily obtains the cross-section expansions

σs = 4π|b|2(1− 2kb′′ +O(k2)), (10)

σa =
4π

k
b′′(1− 2kb′′ +O(k2)). (11)

Now the expression in square brackets of (7) can be writ-
ten as the sum of (11) and (10):

n′′ =
%

2k

[

σa + 4π(b
′2 + b′′2) +O(k)

]

=
%

2k

[

σa + σs

]

.

The scattering cross-section (10) includes coherent as well
as incoherent scattering. For example, the bound scatter-
ing cross-section of an isotope of nuclear spin I with its
spin-dependent scattering length

b = bc +
bi

√

I(I + 1)
σ · I (12)

is given by

σs = 4π

(

|bc|2 + |bi|2 +
2Re(b∗cbi)
√

I(I + 1)
σ · I

)

, (12a)

where we neglect terms in kb′′ for clarity. The spin-inde-
pendent part of this cross-section is the sum of the co-
herent and incoherent scattering cross-sections, which are
defined by

σs,c/i = 4π|bc/i|2. (13)

In an unpolarized experiment,
〈

σ · I
〉

= 0, the imaginary
part of the refractive index is therefore related to the to-
tal reaction cross-section, i.e. the sum of the absorption
as well as the coherent and incoherent scattering cross-
sections:

n′′ =
%

2k

[

σa + σs,c + σs,i

]

=
%

2k
σt.

We therefore see that the imaginary part of our expres-
sion (6) indeed satisfies the optical theorem. For scatter-
ing thermal neutrons off 3He, the total cross-section is
strongly dominated by the absorption cross-section [26],

σa = 5327
+10
−9 b,

σs,c + σs,i = 3.4(2) b.

Thus, to an excellent approximation,

n′′ ≈ %

2k
σa. (14)

For thermal neutrons we can emphasize the linear wave-
length dependence of the absorption cross-section by ex-
plicitly factorizing

σa [barn] = 5327
+10
−9 ×

λ

1.798 Å
≡ λ ·Ka. (15)

3 Experimental procedure

Interferometry is presumably the most straightforward
way to measure refractive indices of sufficiently trans-
parent materials. This technique has nowadays become
a standard procedure also for neutron optical experi-
ments [27–29]. Compared to the very first interferomet-
ric refractive-index measurements [9], today’s experiments
benefit from increased neutron flux as well as improved
crystal quality, crystal shape, and thermal as well as me-
chanical stability of the apparatus.

Out of the thermal neutron beam at the H25 neutron
guide at ILL, nearly monoenergetic neutrons are reflected
from a perfect silicon monochromator crystal through sev-
eral slits onto the instrument. The interferometer is posi-
tioned in a such way that the Bragg reflecting [220] lat-
tice planes of the monochromator and the interferometer’s
slabs form a nondispersive setup, cf. fig. 1. Inside the first
slab, the normalized incident neutron’s wave function ψ
is divided by amplitude into two coherent partial wave
functions ψ1,2 which subsequently travel through the in-
terferometer via spatially separated paths. At the location
of the last silicon slab, the partial wave functions interfere
coherently and form two outgoing wave functions

ψ∅ = ψ1 + ψ2, ψH = ψ1 − ψ2
which, without beam losses, are again normalized so that

|ψ∅ + ψH |2 = 1. (16)

When a sample of refractive index n′ and thickness s
is brought into one of the paths, say path 2, the phase of
partial wave function ψ2 travelling with wave number k
will be shifted according to

φn′ = (n
′ − 1)ks (17)

with respect to ψ1. Inserting the real part of (6) into (17),
we get the important relation

φn′ = −%sλb′c(1− 2kb′′c +O(k2)), (18)

where we have limited our attention to the unpolarized
case, 〈σ ·I〉 = 0. If we neglect the k2 correction within the
brackets, which is of the order 10−8, relation (18) states
that the phase shift φn′ is essentially a linear function
of the wavelength of the neutron, the coherent scattering
length of the nuclei and the sample’s gas particle number
density per unit area. Hence, if the neutron wavelength
and the sample thickness are known, the scattering length
can be measured as a change in phase shift when the par-
ticle number density is altered. This is the central idea of
the experiment described here.
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Fig. 1. A thermal neutron beam is reflected by a monochro-
mator crystal towards the interferometer. The neutron wave
function is divided by amplitude within the divider slab T. The
partial wave functions ψ1,2 travel spatially separated through
the instrument. They are reflected by mirror slabs S1, S2 to-
wards the analyzer slab A where they interfere coherently. The
crystal’s reflecting lattice plane orientations are shown by thin
lines. The outgoing wave function is detected in two 3He coun-
ters ∅, H. The sample, which is characterized by the refractive
index n′, was either placed in one of the partial neutron beams
or removed from both partial beams. In the “sample” position
a) the phase shift due to the sample can be detected, while
the phase shift due to the aluminum windows is largely com-
pensated by the evacuated reference cell. In the “reference”
position b) the intrinsic phase shift φint of the instrument can
be monitored. By rotation of an aluminum phase shifter PS
through an angle ε, the relative phase φps of the partial beams
can be controlled. ε = 0 is assigned to the symmetrical position
of the aluminum flag, where the phase shift φps vanishes.

Besides the sample’s phase shift, there are three ad-
ditional contributions to the total phase shift of the par-
tial beams. Firstly, it turns out that the sample cell itself
causes a constant phase shift offset φoffsetint , which can be
explained by slight window thickness imperfections of the
sample container and is observed in the sample position
relative to the reference position. Secondly, we observe
that the instrument gives rise to a time-varying phase shift
φint(t) due to mechanical and thermal instabilities. We
will return to discuss these so-called intrinsic phase shifts
below. Finally, we add an adjustable phase shift φps by
means of a plane parallel aluminum phase flag, cf. fig. 1.
We rotated the phase shifter through 32 orientations εi,
thereby varying the relative phase between the two partial
wave functions over −2π . φps(εi) . +2π with

φps(εi) = 2π
(

sec(θH − εi)− sec(θH + εi)
)Dps

Dλ
. (19)

Dps is the thickness of the phase shifter, 2θH is the angle
between the two partial beams after the divider slab and

Dλ is the λ-thickness of aluminum given by Dλ =
λ

n′ps−1

which is about ∼ 150µm for thermal neutrons, λ = 1.9 Å.
In each phase shifter orientation, neutrons were counted
in both detectors for a period of ∆t = 10 s. As a result,
we record intensity signals, so-called interferograms, which
are sinusoidally oscillating functions of the phase flag ro-
tation angle. To summarize, the total phase shift of the
partial beams is given by

Φ = φn′ + φps(εi) + φ
offset
int + φint(t). (20)

The total phase shift (20) is detectable as an intensity
modulation of the two outgoing beams

I∅,H ∝ |ψ∅,H |2 = (1± cosΦ)/2,
where the upper(lower) sign is valid for the ∅(H) beam,
respectively.

If one of the partial neutron beams inside the inter-
ferometer passes a neutron absorbing material like 3He,
eq. (16) is not valid anymore. Nevertheless, absorption
only has the effect of reducing the mean outgoing neu-
tron intensity and the visibility of the interference fringes
without changing the phase relation of the transmitted
partial waves. Then the phase-dependent intensity oscil-
lations read

I∅,H = (1 + γ ± 2
√
γ cosΦ)/4, (21)

where extinction mechanisms are described by the damp-
ing factor

γ := exp(−2n′′ks) = exp(−Ka%sλ). (22)

In our discussion we have not yet considered that the
relative intensities of the two partial beams can be differ-
ent, i.e.

|ψ1|2 6= |ψ2|2.
Starting from a normalized incident neutron flux, the re-
sulting partial-beam intensities I1,2 = |ψ1,2|2 depend on
both the reflectivity and transmittivity of the interferome-
ter’s divider slabs (cf. fig. 1) which may even vary slightly
in time due to detuning of the instrument’s adjustment
caused by thermal drifts or mechanical shocks, for exam-
ple. Thus, we have to replace (21) by

I∅,H = (I1 + γ · I2 ± 2 ·
√

I1 · I2 · γ cosΦ)/4. (23)

In particular, the total outgoing beam intensity Iout is a
function of the relative partial-beam intensities I1,2:

Iout = I∅ + IH = I1 + γ · I2. (24)

As described in more detail in sect. 3.6 the pressure-
dependent ratio

T = Isamout /I
ref
out =

I1 + γ · I2
I1 + I2

(25)

of the outgoing-beam intensities in the sample (sam) and
reference (ref) position (cf. fig. 1) can be used to deter-
mine directly the damping factor γ and with it the prod-
uct term % · s · λ, cf. (22). The latter quantity is needed



W. Ketter et al.: Precision measurement of the coherent neutron scattering length of 3He 247

8000

4000

0

C
o

u
n

ts
Z

 [
n

 /
 1

0
s]

-200 -100 0 100

Path difference in Al, h [µm]

p(
3
He) = 5.275(2) bar 

reference

sample

Φ

∆
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and when both beams travel through the evacuated reference
cell (top). The phase shift Φ is greater than 2π for sample
pressures above ∼ 4.5 bar.

in order to extract the coherent scattering length b′c from
the measured phase shift φn′ (cf. sect. 3.4). In order to
measure the phase shift due to the sample, a pair of in-
terferograms was recorded with and without the sample
in the path of the partial wave function ψ2, see fig. 2. For
the sake of brevity, we refer to the sample interferogram
(lower intensity in fig. 2 due to neutron absorption within
the sample) when the partial beam 2 passes the sample
cell, cf. fig. 1a). When both partial beams pass through
the evacuated compensation cell, fig. 1b), we speak of the
reference interferogram (higher intensity in fig. 2).

We now discuss the time dependence of the intrinsic
phase shift φint(t). Let ∆t be the integration time of an in-
dividual measurement at time ti. Then the mean intrinsic
phase shift during this measurement is given by

φ∆tint(ti) =

∫ ti+∆t

ti

∂φint(t)

∂t
dt. (26)

In the reference position one observes for a given phase
shifter position εi the total phase shift

φrefi = φps(εi) + φ
∆t
int(ti). (27)

The time dependence of the intrinsic phase shift can be
analyzed as follows: we choose the ansatz

φ∆tint(ti) = f(ti) + g(ti),

where g(ti) behaves statistically in the sense that it satis-
fies 〈g(ti)〈T= 0 over the measuring period T of a complete
interferogram. The remaining term can be expanded to a
polynomial of order M :

f(ti) =

M
∑

k=0

qk · (ti)k. (28)

Now ∆t and T are chosen such that during the period T
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Fig. 3. The intrinsic phase of the instrument over the complete
beam time is obviously correlated with the temperature of the
instrument. Violations of the correlation, e.g. at t = 1d, are
caused by mechanical modifications of the setup.

φint(ti) = q0 + q1 · ti + g(ti) (29)

is valid to very good approximation. We verified experi-
mentally that this was the case for ∆t = 10 s and T ≈
10min: Higher-order polynomial terms in the measured
phase shifts φrefi , eq. (27), would become noticeable in the
interferograms as the fit function within the experimen-
tal error bars would deviate from a pure sine (cf. fig. 2),
and this was definitely not observed. Long-term drifts, i.e.
nonlinear contributions

f̃(Tj) =
M
∑

k=2

qk · (Tj)k (30)

only could be traced by analyzing sequences of interfero-
grams j over periods of days and plotting the extracted
intrinsic phases φint,j vs. time, cf. fig. 3. A comparison
with the ambient temperature of the interferometer, also
plotted in cf. fig. 3 for the complete course of the measure-
ments, shows that the intrinsic phase of the instrument is
obviously correlated to the temperature of the interfer-
ometer. It is thus necessary to stabilize the temperature
of the instrument to reduce these unwanted phase drifts.
The data shown in fig. 3 were recorded using a thermally
isolated and stabilized setup, which will be described in
sect. 3.2. After stabilization, linear intrinsic phase drifts
up to q1 ≤ π/(12) h were observed.

Since the sample interferogram contains the intrinsic
phase shift as well,

φsami = φn′ + φps(εi) + φ
offset
int + φ∆tint(ti), (31)

a sequential recording of both interferograms was not fea-
sible with our setup due to thermal drifts which may gen-
erate additional phase shifts falsely assigned to φn′ of the
sample. During the time T ≈ 10min necessary to record a
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complete interferogram the intrinsic phase may change as
much as 40mrad, if the maximum observed thermal varia-
tion of the temperature stabilized instrument is assumed.
To compensate this intrinsic phase drift each pair of in-
terferograms (reference and sample) was recorded pseudo-
simultaneously. This means that for each phase shifter
orientation, the sequence of sample and reference mea-
surements is reversed. If for a given phase shifter position
neutrons were counted first in the cell’s sample position
and afterwards in the reference position, then after ro-
tating the phase shifter to the next orientation, neutrons
were counted first in the cell’s reference and subsequently
in the sample position. A simulation calculation was car-
ried out in order to estimate the residual systematic effect
on the sample phase φn′ under worst case conditions, i.e.
q1 = 40mrad/(10min), when this pseudo-simultaneous
measuring sequence is used.

3.1 Eliminating systematics due to linear intrinsic
phase drifts

For N phase shifter positions εi the corresponding values
of the phases φps(εi) are generated using 19. This data
set gives the phase shifter’s contribution at position εi to
the total phase of both the reference and sample interfero-
gram. The sample interferogram phases are then shifted by
adding a fixed value of φn′ , the sample’s phase contribu-
tion. The contribution of the linear phase drift q1 is taken
into account by adding the intrinsic phase q0+q1 ·τ1 to the
j-th data point of this pseudo-simultaneous measurement
sequence, where τj reflects the start time of the j-th mea-
surement (1 ≤ j ≤ 2N). The values of τj are not equidis-
tantly spaced: After a counting time ∆tcount = 10 s, either
the phase shifter is moved to its next position, which takes
∆tps = 6 s or the twin cell is moved from the reference to
the sample position or vice versa with ∆trs = 18 s. Fig-
ure 4 shows a timing diagram of such a measurement se-
quence starting with the reference measurement at phase
shifter position εi. The expected total phases at time τj
then follow the scheme:

Φref1 = φps(ε1) + q0 + q1τ1,

Φsam1 = φn′ + φps(ε1) + q0 + q1τ2,

Φsam2 = φn′ + φps(ε2) + q0 + q1τ3,

Φref2 = φps(ε2) + q0 + q1τ4,

Φref3 = φps(ε3) + q0 + q1τ5,

· · · .

Now, the two sets of N values for the total phases Φ
ref(sam)
i

are used to simulate the data points Z
ref(sam)
i of an inter-

ferogram like in fig. 2 by taking the simple relation

Z
ref(sam)
i = cosΦ

ref(sam)
i . (32)

The generated data of both the reference and sample
interferogram are finally fitted using the model function

Z = K1 +K2 cos(K3 · (φps − φ0) +K4). (33)
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Fig. 4. Timing diagram of the measurement sequence. Count-
ing times are shown as white boxes, whereas times of adjust-
ments are shaded grey. The sequence of measurements in the
reference and the sample position alternate from one phase
shifter position (εi) to the next (εi+1).

The fit parameters K1 and K2 have been included for
simple plausibility tests. They should of course agree rea-
sonably well with K1 = 0 and K2 = 1. While φps is the
independent variable, φ0 has been introduced in order to
vary the start phase between different simulations within
−π ≤ (φ0−φps) ≤ +π, where the mean value of the phase
shifter phases φps is given by

φps =
1

2
(φps(εN ) + φps(ε1)) .

The N = 32 values of the phase shifter phases φps(εi)
always span a range of [−2.5π, 2.5π]. By taking the dif-
ference of the fitted phases K4 of the two interferograms,
we get an estimate for the input parameter φn′ . The de-
viation of this estimate from the input value φn′ is then
given by

∆φn′ = K4,sam −K4,ref − φn′ . (34)

Furthermore, calculations have been carried out for sev-
eral fixed values of the sample phase shift 0 ≤ φn′ ≤ 2π.
A linear phase drift of slope q1 = 10

−4 rad/s was assumed
in all calculations, corresponding to the largest value that
was observed during the experiment. Without loss of gen-
erality, q0 was set to zero. Each pair of data sets was fitted
using different values of the start phase φ0.

Fig. 5. Systematical phase fit error ∆φn′ due to a linear phase
drift as a function of the true phase shift φn′ of the sample and
of the deviation φ0−φps of the fit reference phase with respect
to the center of the data.
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Figure 5 shows the deviations ∆φn′ as a function of
the input parameter φn′ and as a function of the difference
φ0−φps. The systematical phase error due to phase drifts
is of the form ∆φn′ ∝ −(φ0 − φps) sin2 φn′ and vanishes
when the fit start phase is set to the center of the data,
φ0 = φps. Even under the assumption that the fit start
phase is shifted by as much as half a period away from
the center of the interferogram, the deviation ∆φn′ is well
below 5×10−5 rad. We thus get the important result that
the systematical error stemming from linear phase drift
can in principle be eliminated completely if the start phase
φ0 of the harmonic fit is set to the mean phase shifter
phase φps. Application of this technique is tacitly assumed
in the data analysis which will be described in sect. 4.

3.2 Apparatus

The skew-symmetrically shaped interferometer crystal is
placed on a rotatable table which is equipped with a piezo
stepper and an encoder which allow angular adjustment of
the crystal with a resolution of 0.2µrad within 110mrad.
Together with the monochromator crystal, the interferom-
eter table is mounted on a suspended optical bench that
provides excellent vibration damping. The phase shifter,
an aluminum slab of 5mm thickness and plane parallel
surfaces, can be positioned to an accuracy of 1µrad by
a goniometer. The neutrons in the ∅- and H-beams are
counted in two 3He filled detectors. A concise description
of the basic instrument setup S18 can be found in [30].

A cylindrical volume containing the interferometer ta-
ble, the interferometer crystal itself, the twin cell and the
phase shifter, was thermally isolated by wrapping it with
a double layer of Mylar c© foil. This box was thermally
regulated using a combined system of a 120W electrical
heating and a double water cooling cycle, which is stabi-
lized to the cooling water temperature.

3.3 Wavelength

The mean neutron wavelength was determined by mea-
suring the rotation angle 2θ of the interferometer to the
symmetrical Bragg peak, where the [220] lattice planes of
the monochromator and the interferometer slabs form a
dispersive setup, cf. fig. 6. Using the lattice constant of
silicon dH = 1.92005(2) Å [31], and the well-known Bragg
condition for the reflection of first order λ/2 = dH sin θ,
the mean wavelength of the neutrons was found to be

λ = 1.910(2) Å. (35)

The uncertainty of this value is dominated by the dif-
fuse peak position of the dispersive Bragg peak, see fig. 6.
We examined the sensitivity of the fitted peak position to
both cuts at the left and right tails of the peak and the
way background was subtracted from the measured rock-
ing curve of the dispersive Bragg peak. It could be shown
that the dispersive peak position is uncertain by less than
0.03◦, cf. table 1.

Fig. 6. Rocking curves of the dispersive and nondispersive
Bragg peaks. When the lattice planes of the monochromator
crystal and the interferometer crystal are coplanar, the beam
is Bragg reflected at the interferometer slabs and both crys-
tals form a nondispersive setup (top). When the interferometer
crystal is rotated by two Bragg angles around an axis perpen-
dicular to the incidence plane, the Bragg condition is again
fulfilled and both crystals form a dispersive setup (bottom).
The mean neutron wavelength can be computed from a mea-
surement of the interferometer rotation angle between the two
Bragg peaks. The data are well described by Voigt functions
(solid lines). Different backgrounds (dotted lines) were sub-
tracted from the low-intensity dispersive data to investigate
the uncertainty of the peak position.

Table 1. Dependence of the dispersive peak’s position on sub-
traction of different background models and the data cuts at
the low- and high-angular tail of the rocking curve.

Centroid αdisp

Raw data 58.681◦

Constant background 58.669◦

Linearly increasing background 58.669◦

Cut data points αdisp ≥ 59.4◦ 58.649◦

Cut data points αdisp ≤ 58.0◦ 58.692◦

Cut data points αdisp ≥ 59.4◦, αdisp ≤ 58.0◦ 58.659◦

Mean centroid 58.67(3)◦

3.4 Admixture of λ/n neutrons

It is a general property of monochromator crystals that
λ/n-contaminations (n = 2, 3, . . .) are also present in
the reflected beam. Starting from (17) it is easily shown
that the mean phase shift of nonmonochromatic beams is
given by Φ = (n′ − 1) 2π

λ
s, where the mean wavelength
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of the beam’s particles is given by λ =
N
∑

n=1
a λ
n

λ
n with

N
∑

n=1
a λ
n

= 1. The relative weights a λ
n

of λ/n neutrons

generally decrease with increasing n because of the λ-
dependence of the nuclear structure factor resulting in
lower peak reflectivity. Due to multiple Bragg reflection at
the Si-interferometer slabs higher-order wavelength con-
taminations are still more suppressed. Moreover, the ther-
mal neutron flux at the neutron guide H25 at ILL rapidly
drops off for neutron wavelengths λ < 1.5 Å, so we ex-
pect higher-order contaminations to be negligibly small.
However, due to the (1/v)-law of absorption, the relative
admixture of λ/n neutrons grows when the optical thick-
ness of the absorber (3He) is increased.

For a more quantitative analysis of higher-order con-
taminations it is sufficient to assume that the neutron
beam traveling through the interferometer is an admix-
ture of aλ neutrons of wavelengths λ and a λ

2
neutrons of

wavelength λ/2 satisfying aλ + aλ
2
= 1. Then, the ini-

tial mean wavelength of the neutron beam is given by
λi =

1+aλ
2 λ. After having traveled through an absorbing

sample characterized by s and n′′, cf. eq. (17), the neu-
trons of wavelength λ will be attenuated to a fraction γaλ,
while neutrons of wavelength λ/2 will only be reduced to√
γaλ

2
, where γ = exp(−Ka%sλ) as before, cf. eq. (22).

Calculation of the final mean wavelength λf behind the
absorbing sample yields

λf =

√
γ aλ
1−aλ

+ 1
2√

γ aλ
1−aλ

+ 1
λ. (36)

Even for a small initial λ/2 contamination 1−aλ ¿ 1, the
mean final wavelength λf will eventually approach λ/2 for
strong absorption, γ → 0.

This change of the detected neutrons’ mean wave-
length clearly alters the simple linear number density
dependence of the phase shift (18). Rather, replacing λ
in (18) by λf , we get

φn′ = −λf%sb′c(1− 2kb′′c )

=

√
γ aλ
1−aλ

+ 1
2√

γ aλ
1−aλ

+ 1
λ%sb′c(1− 2kb′′c ), (37)

where we have neglected the correction to the small term
in kb′′c for brevity.

Measuring the phase shift as a function of the num-
ber density therefore enables one to detect higher-order
wavelength contaminations as deviations from the strictly
linear behaviour (18). Since b′′c = −1.4816(28) fm [32]2 and
γ is a well-known function of %s, cf. eq. (22), the relative
weight aλ of λ-neutrons within the initial beam can be
quantified using the model function (37).

2 The errors of the imaginary parts of the scattering lengths
that have been stated in this publication were underestimated
by a factor of 10 [33].

3.5 Cell design

The container for the gaseous sample should have a con-
stant effective sample thickness over the partial neutron
beam cross-section. The neutron beam windows of the
container must be highly plane parallel in order to con-
serve coherence over the neutron beam cross-section. Our
windows were made from aluminum which has a lambda-
thickness of 150µm for neutrons of wavelength λ = 1.9 Å.
The plane parallelism (< 8µm over the neutron beam dia-
meter), the flatness (< 6µm) and the roughness (Rmax <
3µm) of the fine-cut window surfaces were much smaller
than the lambda thickness of the window material to avoid
decoherence. The rather large value of nonparallelism is
the consequence of a slightly biconcave shape of the win-
dow thickness which was unavoidable in the manufactur-
ing process. Although neutron coherence conservation is
assured, the variation of the aluminum window thickness
leads to an offset phase shift which will be discussed in
sect. 4. The aluminum window thickness was chosen to
be 6mm which is sufficient to limit window bending un-
der pressures of up to 10 bar below 6µm. The deformation
of the sample cell under pressure was investigated experi-
mentally and yields

s = 38.017mm+ (0.002mm/bar) · p± 0.008mm (38)

at ϑ = 26.6(1.3) ◦C, where the additional effects of ther-
mal expansion of the cell material are already included.
The phase shift of the sample beam inside the window
material must be compensated to preserve coherence of
both partial beams. This is done by placing an identical
but evacuated cell into the second partial beam. To avoid
misalignment, both cells were combined to one twin vessel
milled from a single aluminum block, cf. fig. 7. Moreover,
also the entrance and exit windows were realized as single
pieces for both cells to ensure optimal parallelism. The
helium leakage rate of both cells was measured to be less
than 10−8mbar`/s, resulting in a pressure change below
10−2mbar/day. The skew symmetry of the interferometer

Fig. 7. Aluminum body of the twin cell. Both chambers have
dimensions 38 × 70 × 30mm3 (L×W×H). Plane parallel alu-
minum windows are screwed on the face ends and sealed with
O-rings. The sample chamber has two retainers for a pressure
gauge (p) and a temperature sensor (ϑ).
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leads to nearly parallel partial beams inside the instru-
ment. Thus, the twin cell does not act as a phase shifter:
if the partial neutron beams do not hit the cell orthogo-
nally, the effective window thickness is still equal in both
partial beams. Therefore, a potential misalignment δ of
the twin cell does not cause systematical phase contribu-
tions. On the other hand, the increasing effective sample
thickness seff = s/ cos δ leads to a second-order system-
atic effect. Even for a cell misalignment δ as large as 2.5◦,
which could easily be detected, the increase of the effec-
tive cell thickness is smaller than 10−3 × s and is thus
negligible. Cell misalignment during the experiment was
smaller than 1◦, which was verified using a theodolite.

3.6 Particle number density

The sample chamber of the twin cell has two retain-
ers where sensors to measure the gas pressure p and
the gas temperature ϑ were fixed. The ceramic pressure
gauge Bourdon Haenni EL74 and the semiconductor tem-
perature transducer National Semiconductor LM35AH
were calibrated twice by the German Calibration Ser-
vice (DKD). The calibrations were performed at the time
of the experiment and two years later: both times, the
transducers were mounted at the cell and they have not
been removed in between. The signals of both sensors
were found to deviate within the limits claimed by the
manufacturers. The signal of the LM35AH exhibited sys-
tematic deviations of ∆ϑm ≡ ϑm − ϑcal = −0.24K in
2003 and ∆ϑm = −0.44K in 2005 at room temperature.
We assumed an uncertainty of σϑm

= 0.5K, which is
the conservative estimate provided by the manufacturer
for the uncalibrated transducer. The output signal of the
EL74 pressure transducer showed a systematic deviation
∆pm ≡ pm−pcal of less than ∆pm

pm
< −0.4% over the com-

plete pressure range (0, . . . , 10 bar). From a parabola fit
f(pm) to the data points of the 2003 calibration, cf. fig. 8,
we could correct the EL74 readout pressure according to

pcal = pm · (1− f(pm)) . (39)

As a conservative estimate of the pressure uncertainty we
used the relative deviation of the 2003 and 2005 calibra-
tion data, i.e. ∆pm/pm = ±0.2%, see fig. 8. Measuring the
thermodynamic variables p and ϑ of the sample gas, the
particle number density % can be calculated from the van
der Waals equation for real gases

(

p+
a%2

N2
A

)(

1− %

NA
b

)

=
%

NA
Rϑ, (40)

which is a cubic equation in %. NA denotes Avogadro’s
number, R is the molar gas constant, and the van der
Waals constants for helium are given by a = 34.6077(12)×
10−9 barm6/mol2 and b = 23.7384(6)×10−6m3/mol [31].

With the particle number density %, the effective sam-
ple thickness s, eq. (38), and the mean wavelength λ,
eq. (35) we can finally determine the product term % · s ·λ
and with it the damping factor γ, eq. (22). As was al-
ready discussed before, by measuring the total outgoing
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beam intensities Isamout , I
ref
out in the sample and reference po-

sition, respectively, we get an independent access to these
quantities. Thus the transmission measurements provide a
cross-check for the correctness of the product term as de-
rived from the individual quantities %, s, and λ. In fig. 9
the transmission T as calculated from the summed neu-
tron counts in the sample and reference positions, see
eq. (25), is plotted as a function of the sample gas par-
ticle number per unit area, % · s. Discontinuities, which
are significant within the error bars, indicate that the
partial-beam intensities I1,2 were not constant during the
whole measurement period of almost 170 hours. There-
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sity %, the sample thickness s, and the neutron wavelength λ.
Errors larger than the data symbols are printed as lines. The
results of both measurement methods are in excellent agree-
ment. The straight line shows the linear fit to the data.

fore, the data points are separated into six sets, which are
defined by having been recorded without re-adjustments
of the instrument. These data sets i are fitted exponen-
tially to yield pairs of values for 〈I1,2〉. Because Set 2
has been measured at essentially only two distinct pres-
sure values, the exponential fit to this set is statistically
insignificant and has been neglected in further analysis.
Using eqs. (22) and (25) we can calculate the product

(%sλ)trans,i =
1
Ka
·ln(Ti+ 〈I1〉i

〈I2〉i
(Ti−1)). Note that the fitted

values of 〈I1,2〉i are insensitive to the scaling of the inde-
pendent fit variable since they represent asymptotic values
extracted from T (γ = 0) and T (γ →∞), cf. eq. (25). In
fig. 10 the quantity (%sλ)trans,i is plotted vs. the product
term (%sλ).

One expects the data points to lie on the bisector if
the measurements are consistent. A line fit (%sλ)trans =
a0 + b0(%sλ) to the data yields a constant a0 which is
zero within the error bars, a slope b0 with excellent agree-
ment to unity, and a reduced χ2ν = 7, which indicates that
the uncertainty of the data might have been underesti-
mated. This likely reflects the fact that the ratio I1/I2
is not constant during periods between re-adjustments of
the apparatus. We conservatively account for this possi-
ble systematic error by re-estimating the uncertainties and
multiplying them with a factor

√
7. We finally get

a0 = −2(6)× 10+11m−1,

b0 = 1.000(3),

χ2ν = 1.

We conclude that the determination of %sλ through trans-
mission measurements is not only consistent with the mea-
surements of the individual quantities but yields a nearly

identical uncertainty of ±3h. For the analysis of the scat-
tering length we use the values of the individual measure-
ments for the determination of (%sλ) with its relative un-

certainty of ∆(%sλ)
(%sλ) = ±3h, which is dominated by the

relative uncertainties of both the pressure and wavelength
measurements.

3.7 Measuring sequence

Before the first measurement was performed, the gas ves-
sel was evacuated to a pressure p below 10−3mbar and
then filled with 3He (3He > 99.993%, 4He < 0.007%,
N2 < 2 ppm, O2 + Ar < 1 ppm, total hydrocarbons
< 1 ppm, CO + CO2 < 1 ppm, H2 < 1 ppm, thereof
3H2 < 4.2 × 10−8 ppm)3. Among the specified isotopes
protons lead to the strongest shift of the samples’ effective
scattering length. A simple calculation shows that even a
7 × 10−3 admixture of protons would shift the measured
scattering length by less than 7 × 10−4 fm and therefore
was more than an order of magnitude smaller than the
stated error of our result. The effect of the factual impuri-
ties is still much smaller. That is why the systematic error
caused by gas impurities is negligible. After recording be-
tween three and five interferograms with and without sam-
ple, the gas particle number density was reduced slightly
by opening a electropneumatic valve towards a vacuum
pump for a short time. The stepwise reduction of the gas
pressure (∆p ≈ 10, . . . , 100mbar) was repeated until only
a small quantity (< 100mbar) of gas was left in the sample
container. After another evacuation the cell was refilled
with fresh 3He gas. The whole procedure was repeated
three times with initial 3He pressures of p = 1bar, 5.9 bar
and 7.5 bar. In this way the phase shift due to the 3He gas
was measured as a function of the particle number density
of the sample. A typical pair of interferograms is shown
in fig. 2. The measured quantity is the phase shift of the
sample interferogram with respect to the reference inter-
ferogram. Besides the attenuation of neutron intensity due
to strong neutron absorption inside the 3He volume, the
phase shift is clearly visible.

4 Data analysis and results

For each pair of interferograms with and without sample,
the phase shift was calculated by fitting harmonic func-
tions to the data and computing the difference of the ex-
tracted phase constants. This technique is equivalent to
the procedure described in sect. 3.1. Taking only Pois-
son statistics into account, the data are not described in
a satisfactory way by cosine fits: a considerable number
of data points, most notably in the edges of the cosine,
deviate significantly from the fit function, see fig. 11. We
typically get a reduced chi-squared of the order of ten. We
assume that short-time phase fluctuations of the instru-
ment are responsible for this behaviour. To take this error

3 Purity according to the supplier CHEMGAS - 92100
Boulogne - France.
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contribution into account, we estimate the mean phase
uncertainty of the individual data point in the following
way: the expected count rates

Z = K1 +K2 cosΦ (41)

are harmonic function of the phase Φ. The residuals of
the individual data points with respect to the first fit
are considered as phase residuals ∆Φ instead of count
rate residuals ∆Z. The analysis of the phase residuals
∆Φi, i = {1, . . . , 32} of every interferogram shows that
these deviations are statistically distributed. Thus we
may equate ∆Φi with g(ti) from (29) since it satisfies4
〈

∆Φi
〉

T
= 0. We therefore assume that it is justified to

take the standard deviation of the phase residuals as an
estimate for the mean phase fluctuation ∆Φ of the indi-
vidual data points, cf. fig. 12. In the next step, the mean
count rate fluctuation ∆Z caused by the mean phase fluc-

4 The reason for these statistical fluctuations of the intrinsic
phase are tiny mechanical vibrations of < 1Hz at the interfer-
ometer’s suspension, which make their mark on the interfero-
meter setup, resulting in short term fluctuations of the intrinsic
phase.
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tuation can be estimated:

∆Z = K2 sinΦ×∆Φ. (42)

By combining the Poisson statistics uncertainty and the
phase fluctuation uncertainty of the count rates through
Gaussian error propagation, we arrive at new estimates for
the uncertainties of the individual count rates, see fig. 13.
Fits to the data with improved count rate error estimates
yield reduced chi-squared values which are very close to
unity.

In fig. 14, the phase shifts of each pair of interferograms
is plotted against the product of the particle number den-
sity % times the effective sample thickness s, which was
calculated from the thermodynamic state variables pres-
sure p and temperature ϑ. The coherent scattering length
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is obtained from a fit to the data, using the model func-
tion (37) and the relation (22). Herein, Φn′ and (%sλ) are
the dependent and independent variables, b′c and aλ are
fit parameters, and Ka, k = 2π/λ, b

′′
c are fixed constants

5.
The errors in Φn′ and (%sλ) are assumed to be statistically
independent. Therefore the errors in (%sλ) can be added
to the error in Φn′ by Gaussian error propagation:

(∆fitΦn′)
2
= (∆Φn′)

2
+ (∆(%sλ))

2
.

We first note that the data show an almost linear de-
pendence on %, corresponding to only small higher-order
wavelength contaminations. Secondly, the fit to the data
obviously does not hit the origin. Instead, even if the sam-
ple chamber is empty, a phase shift of φoffsetint = 1.626(4) rad
is observed. This phase shift can be explained by a slightly
biconcave shape of the aluminum windows which is a con-
sequence of the mechanical production process. Figures 15
and 16 show a micrometer gauge measurement scan of
the summed effective thicknesses of the entrance and exit
windows. Also shown are the locations and the FWHMs
of the two partial beams penetrating the aluminum win-
dows with the cell in the sample and the reference posi-
tion, respectively. To first approximation, the topology of
the windows can be described by a second-order polyno-
mial. Calculating the net optical path difference ∆D21,n of
the two partial beams, linear error propagation has been
used as a conservative error estimate. As can be inferred
from figs. 15 and 16, we have ∆D21,sam = 0(4)µm and
∆D21,ref = −30(4)µm for the respective optical path dif-
ferences in the sample and the reference positions giving

5 Due to the smallness of the correction term in kb′′c , which
is of the order 10−4, the shift of k for changing λ/n admixtures
has been neglected.
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travels a longer path through aluminum.

∆D21,n = ∆D21,sam − ∆D21,ref = 30(8)µm, where we
have added the individual errors linearly. This eventually
translates into an offset phase shift

φoffsetint = 2πD21,n/Dλ = 1.26(34) rad,

which is in fairly good agreement with the observed value.
Since the bound coherent scattering length is extracted
from the slope of the curve, the offset phase does not have
any influence on our final result.

The fit to the data yields a value for the bound coher-
ent scattering length of

b′c = 6.010(21) fm (43)

and a relative weight of λ neutrons in the initial beam

aλ = 0.9994(2) (44)

with an excellent reduced chi-squared of 1. It is notewor-
thy that between the measurements marked with the let-
ters A and B we had a 13-hour long measurement break

Table 2. Error budget. For the extraction of b′c from the
phase shift data, (%sλ) with its relative error of ±3h has been
used. For completeness the errors of the transmission analysis
(%sλ)trans are displayed in the second half of the table.

Parameter Value Relative σ Ref.

dH [Å] 1.92005 1× 10−5 [31]
λ [Å] 1.910 1× 10−3

s [mm] 38.017 + 0.002 · p [bar] 2× 10−4

∆p/p 2× 10−3

∆ϑ/ϑ 2× 10−3

∆%/% 3× 10−3

∆(%sλ)
(%sλ)

3× 10−3

aλ 0.9994 2× 10−4

(%sλ)trans a0 + b0(%sλ)
a0 [m−1] −2× 1011 3
b0 1.000 3× 10−3

∆(%sλ)trans

(%sλ)trans
3× 10−3
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in which the twin cell was completely removed from the
apparatus. The fact that the data join seamlessly at the
points A and B underlines the effectiveness of our phase
error compensation scheme.

Table 2 summarizes the parameters and relative un-
certainties of all parameters used to extract b′c from the
measured phase shifts (fig. 14) by using eq. (37).

5 Discussion

Our result b′c = 6.010(21) fm represents almost an order-
of-magnitude improvement in accuracy over the previous
measurement of b′c of Kaiser et al. [9]. The value differs
by 4σ standard deviations with respect to [9]. Very re-
cently, another group published a value for the same quan-
tity with an improved measurement precision as well [34],
which is b′c = 5.853(7) fm. Both experiments confirm
that [9] underestimates b′c. However, a clear discrepancy
between our result and the value for the n-3He bound co-
herent scattering length in [34] is the finding: They differ
by more than 7 standard deviations within their quoted
error bars. Therefore it seems reasonable to suppose that
still a hidden systematic error might not have been consid-
ered yet. To trace out possible sources for this systematic
discrepancy goes beyond the scope of this article and is
a matter of future precision measurements in this field.
Both experiments determined b′c using neutron interfero-
metric techniques. It should be pointed out, however, that
two striking differences characterize the experimental se-
tups used and the way b′c was extracted from the recorded
interferograms. Whereas the group at NIST used a sym-
metrically shaped perfect crystal silicon interferometer,
the interferometer in our measurements at ILL was of the
same kind, but skew-symmetrically shaped. Furthermore,
by varying the sample pressure we introduced an addi-
tional degree of freedom to extract b′c; at the same time
the pressure variation gave us a direct experimental ac-
cess to possible λ/2-contaminations of the neutron beam.
At NIST the cell pressure was kept constant during the
experiment.

Now, taking the value for b′c, eq. (43), and further us-
ing eq. (2) and b = mn

µ a, our experimental result trans-

forms into a linear combination of the singlet and triplet
free scattering lengths a− and a+, which are plotted in
fig. 17 together with the results from different earlier
measurements of the coherent and incoherent scattering
lengths of the n-3He system. The recent value of the n-3He
bound incoherent scattering length, b′i = −2.365(20) fm
(a′i = −1.772(15) fm), which was determined using pseu-
domagnetic precession in a polarized target placed in a
neutron spin echo spectrometer [13], gives an almost or-
thogonal linear combination when plotted into the same
multiplet scattering length plane. From the intersection
point with the error band of our experimental value, new
precise values for the singlet and triplet free scattering
lengths can be derived:

a− = 7.573(30) fm and a+ = 3.480(18) fm (45)

or

b− = 10.106(40) fm and b+ = 4.644(24) fm (46)

for the corresponding bound multiplet scattering lengths.
In order to compare our numbers with the published data
in this field, the experimental error bands of the old data
from Kaiser et al. [9], and the new precision value of b′c
from NIST [34], as well as the results from unpolarized
bound scattering cross-section σs measurements with

σs = 4π
(

|bc|2 + |bi|2
)

,

cf. eq. (12a) from Alfimenkov et al. [10] and Guckelsberger
et al. are included in fig. 17.

Our result is close to very recently published predic-
tions of Hofmann and Hale [14], which are based on micro-
scopic calculations of n-3He scattering with an underlying
Argonne v18 nucleon-nucleon potential with and without
integration of the three-nucleon potentials Urbana IX and
V ∗
3 . Among these models, the potential Av18+UIX repro-
duces best the experimental values for the binding en-
ergy, the threshold energy for neutron separation as well
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Fig. 17. Results of different measurements (NI: neutron in-
terferometry, SE: spin echo spectroscopy) of the coherent and
incoherent scattering lengths of the n-3He system plotted in
the multiplet scattering length plane. Measurements of the co-
herent scattering length result in linear combinations of the
triplet and singlet scattering length with negative slope. Mea-
surements of the incoherent scattering length hitherto yield
almost orthogonal linear combinations. The result most re-
cently measured by [34] differs by as much as 7σ (standard
deviations) from the result reported here. However, both mea-
surement exhibit a trend towards a higher value for b′c as was
reported by [9]. The predictions for the multiplet scattering
lengths based on the modern Argonne v18 potential recently
published by [14] are also shown.
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as the imaginary parts a′′± of the free multiplet scatter-
ing lengths. The discrepancy with regard to the Faddeev-
Yacubovsky calculations in [35] and [3] may possibly van-
ish when three-body forces and the Coulomb interaction
are taken into account in the calculations.

One of us (W.K.) has been funded by a grant of the DFG under
contract number OT 33/17.
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edited by G. Höhler, Vol. 80: Neutron Physics (Springer,
Berlin, 1977) pp. 1-55.

17. V.E. Krohn, G.R. Ringo, Phys. Rev. 148, 1303 (1966).
18. J.S. Meier, Die Bestimmung der kohärenten gebundenen

Streulänge gasförmiger Proben durch Kleinwinkelstreu-

ungsmessungen an Hochdruck-Christiansenfiltern, PhD
Thesis, Technische Universität München (1985).

19. H. Rauch, in Bergmann Schaefer – Lehrbuch der Experi-

mentalphysik, edited by H. Niedrig, Vol. 3: Optik, 9th edi-
tion (Walter de Gruyter, Berlin, 1993).

20. H. Rauch, S.A. Werner, Neutron Interferometry - Lessons

in Experimental Quantum Mechanics, 1st edition (Oxford
University Press, Oxford, 2000).

21. M.L. Goldberger, F. Seitz, Phys. Rev. 71, 294 (1947).
22. V.F. Sears, Phys. Rep. 82, 1 (1982).
23. V.F. Sears, Neutron Optics (Oxford University Press, New

York, Oxford, 1989).
24. G. Baym, Lectures on Quantum Mechanics (Addison Wes-

ley, Reading, Mass., 1990) pp. 197-201.
25. E. Feenberg, Phys. Rev. 40, 40 (1932).
26. V.F. Sears, Neutron News 3, 26 (1992).
27. H. Rauch, W. Treimer, U. Bonse, Phys. Lett. A 47, 369

(1974).
28. H. Rauch, Phys. Bl. 50, 439 (1994).
29. H. Rauch, Phys. J. (Weinheim) 7, 39 (2004).
30. G. Kroupa, G. Bruckner, O. Bolik, M. Zawisky, M. Hain-

buchner, G. Badurek, R.J. Buchelt, A. Schricker, H.
Rauch, Nucl. Instrum. Methods A 440, 604 (2000).

31. L.I. Berger, B.R. Pamplin, in CRC Handbook of Chemistry

and Physics, edited by D.R. Lide, 74th edition (CRC Press,
Boca Raton, 1993-1994).

32. V.F. Sears, F.C. Khanna, Phys. Lett. B 56, 1 (1975).
33. V.F. Sears, private communication with K. Guckelsberger

1991.
34. P.R. Huffman, D.L. Jacobson, K. Schoen, M. Arif, T.C.

Black, W.M. Snow, S.A. Werner, Phys. Rev. C 70, 014004
(2004).

35. V.F. Kharchenko, V.P. Levashev, Phys. Lett. B 60, 317
(1976).


